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● state-of-the-art clean-slate protocol for building network overlays with 
encryption and authentication, IP/IP, many use cases, trusted crypto.

● a WireGuard peer is a host in the VPN, identified by its public key.
each peer can potentially reach every remote peer directly: meshing

● a WireGuard endpoint is the public (or outer) UDP address.
may change when endpoint roams; the tunnel stays up.

● each peer has a set of allowed IP address prefixes within tunnel.
multicasting is possible 21:00
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● Speed growth curve of Ethernet is steeper than that of CPUs.
Offloading 'instructure tasks' such as VPN/encryption and 
authentication to smartNIC FPGAs becomes cost effective.

● Deterministic guaranteed behaviour vs. best-effort on CPU.

Example use case:

● 9th February 2023 – The Video Services Forum (VSF), has further 
enhanced the Reliable Internet Streaming Transport (RIST) protocol 
with the use of WireGuard VPN in RIST devices.
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Why WireGuard on an FPGA? 
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 100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle

roughly one handshake per minute
per active peer connection

1024 peers → 58 ms budget per handshake
take conservative design budget: 25 ms?

 100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle

Map WireGuard; Talk Numbers, challenges
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 Let's do this in RTL

3. Let's do this on a RISC-V VexRiscv
   maybe with some x25519 accelerator

(RISC-V s/w, custom instructions or
custom accelerator).

 Let's do this in RTL

Initial design choices for implementation

6:30
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Design choices: (De)coupling data/control
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Design choices: (De)coupling data/control



SpinalHDL; RTL + zero-cost abstractions from lib

3. Let's do this on a RISC-V VexRiscv
   and build everything with SpinalHDL

Programmatically generate RTL, but 
also SoC design at much higher level!

SpinalHDL; RTL + zero-cost abstractions from lib

9:30

SpinalHDL: design at RTL and system level
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Example: Allowed IP address prefix lookup
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Allowed IP lookup:
Longest prefix match using binary tree

1511:00



● Multi stage pipeline, one stage for each address bit.
● 32 bits/stages for IPv4, 128 for IPv6, 129 for both.
● Each stage has a memory (LUT, distributed or BRAM).
● Use optimally balanced tree (reduce worst case RAM use!).

RAM
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Match Addr w/ Prefix Set (Tree)

Result: longest prefix match



Vivado: report_design_analysis -logic_level_distribution
1713:00

Logic for one stage:
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Optimized for f.max:



➔ Two pipeline stages per bit
➔ Balanced combinatorial logic (≤ 4 levels) between registers
➔ 400 MHz on Ultrascale+
➔ True dual port RAM (RX reads, TX reads, RISC-V writes).
➔ 800 million Allowed IP address prefix lookups per second.
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Match Addr w/ Prefix Set for RX and TX

Result: longest prefix matches



Blackwire builds upon top-notch OSH:
➔ Blackwire uses SpinalHDL (Thanks Charles Papon!)

◆ write cycle efficient RTL in less code
◆ zero cost (no overhead) abstractions
◆ the Spinal (building blocks) library is a piece of art

➔ Blackwire uses Corundum (Thanks Alex Forencich!)
◆ SGDMA NIC design for PCIe and Ethernet FPGA boards
◆ comes with Linux Kernel device driver

and tools... Verilator, GHDL, CocoTB, GTKWave, SymbiYosys, ...
thanks to everyone committing to those projects.
Thanks for explaining formal verification (Thanks Matt Venn!)

2014:30



Blackwire Project Status (9/2023)
➔ Open sourced HDL on GitHub, some WIP to follow

https://github.com/brightai-nl/BlackwireOverview

FAQ: Actual code repositories listed in README!

➔ Are We WireGuard Yet (AWWY)?
◆ 75% done; 
◆ 25% to do, see README on GitHub for TODOs.

2114:45

https://github.com/brightai-nl/BlackwireOverview
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Blackwire IP Core
31.03.2022THEMA

detunnel

manage remote peers, sessions and keys

decrypt

encrypttunnel route

allowAXI4 Stream

AXI4 Stream AXI4 Stream

AXI4 Stream

AXI4 Configuration

➔ https://github.com/brightai-nl/BlackwireOverview

https://github.com/brightai-nl/BlackwireOverview


Blackwire: 'wg0' but implemented on FPGA
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Blackwire WireGuard

Thanks!     Questions?

➔ https://github.com/brightai-nl/BlackwireOverview

➔ Q&A e-mail: Leon Woestenberg <leon@brightai.nl>

https://github.com/brightai-nl/BlackwireOverview
mailto:leon@brightai.nl
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Blackwire FPGA Resources ~ (for 100 Gbit)

Alveo U50 example with Corundum + WireGuard (BRAM, no URAM)

RX path is 128 Gbit/s, TX path is 64 Gbit/s in this design

Resources (roadmap: move more registers into BRAM/URAM)

add the following numbers for 100 Gbit/s full duplex:
subtract the following numbers for ~60 Gbit/s full duplex
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