
Blackwire™
WireGuard in HDL
100+ Gbit/s
on an FPGA NIC

Leon Woestenberg

● state-of-the-art clean-slate protocol for building network overlays with
encryption and authentication, IP/IP, many use cases, trusted crypto.

● a WireGuard peer is a host in the VPN, identified by its public key.
each peer can potentially reach every remote peer directly: meshing

● a WireGuard endpoint is the public (or outer) UDP address.
may change when endpoint roams; the tunnel stays up.

● each peer has a set of allowed IP address prefixes within tunnel.
multicasting is possible 21:00

Ethernet Frame

IPv4
Header

UDP

IP Payload

WireGuard Payload

IP Packet

encrypt: ChaCha20

auth: Poly1305

UDP Payload

WG

256 bit session key

32:00

Ethernet Frame

IPv4
Header

UDP

IP Payload

WireGuard Payload

IP Packet

encrypt: ChaCha20

auth: Poly1305

UDP Payload

WG

WireGuard Type 4 packet
for data packets

42:30

● Speed growth curve of Ethernet is steeper than that of CPUs.
Offloading 'instructure tasks' such as VPN/encryption and
authentication to smartNIC FPGAs becomes cost effective.

● Deterministic guaranteed behaviour vs. best-effort on CPU.

Example use case:

● 9th February 2023 – The Video Services Forum (VSF), has further
enhanced the Reliable Internet Streaming Transport (RIST) protocol
with the use of WireGuard VPN in RIST devices.

5

Why WireGuard on an FPGA?

3:30

previous
current

next

encrypt & add
authentication

on TX

decrypt &
authenticate
peer on RX

Ethernet PCIe or
Ethernet

new
session
handshake

sessions/peer

Map WireGuard into our FPGA design space

4:00

WireGuard Type 4 data packets

WireGuard Type 4 data packets

WGT1-3

WGT1-3

decrypt

allowed ip's
crypto routing
crypto firewall

prevent
replayauth crypto

firewall

session
keys

endpoint
UDP addr

session
indices

peer
public
keys

timers

x25519

headers

hand
shake

auth nonceencrypt crypto
routingheaders

Map WireGuard into our FPGA design space

4:30

 100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle

roughly one handshake per minute
per active peer connection

1024 peers → 58 ms budget per handshake
take conservative design budget: 25 ms?

 100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle

Map WireGuard; Talk Numbers, challenges

5:30

 Let's do this in RTL

3. Let's do this on a RISC-V VexRiscv
 maybe with some x25519 accelerator

(RISC-V s/w, custom instructions or
custom accelerator).

 Let's do this in RTL

Initial design choices for implementation

6:30

decrypt prevent
replayauth crypto

firewallheaders

control software
on VexRiscv RISC-V

auth nonceencrypt crypto
routingheaders

nonce
counter

AXI4
x-bar

RTL logic and
per-session
lookup table

8:00

Design choices: (De)coupling data/control

decrypt prevent
replayauth crypto

firewallheaders

control software
on VexRiscv RISC-V

auth nonceencrypt crypto
routingheaders

nonce
counter

AXI4
x-bar

8:00

Design choices: (De)coupling data/control

previous
current

next

decrypt prevent
replayauth crypto

firewallheaders

control software
on VexRiscv RISC-V

auth nonceencrypt crypto
routingheaders

session
rx key

session
index

endpoint
UDP addr

session
tx key

nonce
counter

nonce
counter

allowed
IP
sets

AXI4
x-bar

9:00

Design choices: (De)coupling data/control

SpinalHDL; RTL + zero-cost abstractions from lib

3. Let's do this on a RISC-V VexRiscv
 and build everything with SpinalHDL

Programmatically generate RTL, but
also SoC design at much higher level!

SpinalHDL; RTL + zero-cost abstractions from lib

9:30

SpinalHDL: design at RTL and system level

decrypt prevent
replayauth crypto

firewallheaders

control software
on VexRiscv RISC-V

auth nonceencrypt crypto
routingheaders

session
rx key

session
index

endpoint
UDP addr

session
tx key

nonce
counter

nonce
counter

allowed
IP
set

AXI4
x-bar

Example: Allowed IP address prefix lookup

10:00

Allowed IP lookup:
Longest prefix match using binary tree

1511:00

● Multi stage pipeline, one stage for each address bit.
● 32 bits/stages for IPv4, 128 for IPv6, 129 for both.
● Each stage has a memory (LUT, distributed or BRAM).
● Use optimally balanced tree (reduce worst case RAM use!).

RAM

16

Lookup Stage 0

RAMLookup Stage 1

RAMLookup Stage 2

RAMLookup Stage 3

//.//.

RAMLookup Stage 31

12:00

Pipeline:
one IP
address bit
per clock

Match Addr w/ Prefix Set (Tree)

Result: longest prefix match

Vivado: report_design_analysis -logic_level_distribution
1713:00

Logic for one stage:

1813:30

Optimized for f.max:

➔ Two pipeline stages per bit
➔ Balanced combinatorial logic (≤ 4 levels) between registers
➔ 400 MHz on Ultrascale+
➔ True dual port RAM (RX reads, TX reads, RISC-V writes).
➔ 800 million Allowed IP address prefix lookups per second.

TDP RAM #31

//.

TDP RAM #3

TDP RAM #2

TDP RAM #1

TDP RAM #0RX

RX

RX

RX

RX

TX

TX

TX

TX

TX

1914:00

Match Addr w/ Prefix Set for RX and TX

Result: longest prefix matches

Blackwire builds upon top-notch OSH:
➔ Blackwire uses SpinalHDL (Thanks Charles Papon!)

◆ write cycle efficient RTL in less code
◆ zero cost (no overhead) abstractions
◆ the Spinal (building blocks) library is a piece of art

➔ Blackwire uses Corundum (Thanks Alex Forencich!)
◆ SGDMA NIC design for PCIe and Ethernet FPGA boards
◆ comes with Linux Kernel device driver

and tools... Verilator, GHDL, CocoTB, GTKWave, SymbiYosys, ...
thanks to everyone committing to those projects.
Thanks for explaining formal verification (Thanks Matt Venn!)

2014:30

Blackwire Project Status (9/2023)
➔ Open sourced HDL on GitHub, some WIP to follow

https://github.com/brightai-nl/BlackwireOverview

FAQ: Actual code repositories listed in README!

➔ Are We WireGuard Yet (AWWY)?
◆ 75% done;
◆ 25% to do, see README on GitHub for TODOs.

2114:45

https://github.com/brightai-nl/BlackwireOverview

| BKW |

Blackwire IP Core
31.03.2022THEMA

detunnel

manage remote peers, sessions and keys

decrypt

encrypttunnel route

allowAXI4 Stream

AXI4 Stream AXI4 Stream

AXI4 Stream

AXI4 Configuration

➔ https://github.com/brightai-nl/BlackwireOverview

https://github.com/brightai-nl/BlackwireOverview

Blackwire: 'wg0' but implemented on FPGA

network interface 'wg0'
with plaintext IP packets

tunneled
encrypted
traffic

(Internet
facing)

2314:45

Blackwire: integrated in network infrastructure

control interface
over PCIe (or other

interface)

tunneled
encrypted
traffic

2414:45

plaintext
traffic

Blackwire WireGuard

Thanks! Questions?

➔ https://github.com/brightai-nl/BlackwireOverview

➔ Q&A e-mail: Leon Woestenberg <leon@brightai.nl>

https://github.com/brightai-nl/BlackwireOverview
mailto:leon@brightai.nl

| BKW |

Complementary Slides
31.03.2022THEMA

Blackwire FPGA Resources ~ (for 100 Gbit)

Alveo U50 example with Corundum + WireGuard (BRAM, no URAM)

RX path is 128 Gbit/s, TX path is 64 Gbit/s in this design

Resources (roadmap: move more registers into BRAM/URAM)

add the following numbers for 100 Gbit/s full duplex:
subtract the following numbers for ~60 Gbit/s full duplex

27

283:30

293:30

