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WIREGUARD

FAST, MODERN, SECURE VPN TUNNEL

e state-of-the-art clean-slate protocol for building network overlays with
encryption and authentication, IP/IP, many use cases, trusted crypto.

e a WireGuard peer is a host in the VPN, identified by its public key.
each peer can potentially reach every remote peer directly: meshing

e a WireGuard endpoint is the public (or outer) UDP address.
may change when endpoint roams; the tunnel stays up.

e cach peer has a set of allowed IP address prefixes within tunnel.
multicasting is possible
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Ethernet Frame




WireGuard Type 4 packet
for data packets
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Why WireGuard on an FPGA?

e Speed growth curve of Ethernet is steeper than that of CPUs.
Offloading 'instructure tasks' such as VPN/encryption and
authentication to smartNIC FPGAs becomes cost effective.

e Deterministic guaranteed behaviour vs. best-effort on CPU.

comeoee 222RIST

RELIABLE INTERNET STREAM TRANSPORT

e 9th February 2023 — The Video Services Forum (VSF), has further
enhanced the Reliable Internet Streaming Transport (RIST) protocol
with the use of WireGuard VPN in RIST devices.
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Map WireGuard into our FPGA design space
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Map WireGuard into our FPGA design space
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Map WireGuard; Talk Numbers, challenges

100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle

LL:> roughly one handshake per minute
per active peer connection

1024 peers > 58 ms budget per handshake
take conservative design budget: 25 ms?

100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle



Initial design choices for implementation

Let's do this in RTL

LL> 3. Let's do this on a RISC-V VexRiscv
maybe with some x25519 accelerator
(RISC-V s/w, custom instructions or
custom accelerator).

Let's do this in RTL
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Design choices: (De)coupling data/control

prevent
replay

header‘s/decr‘ypt/ auth /

nonce

counter

crypto
firewall

N

control software
on VexRiscv RISC-V

7N

&

AXTI4
x-bar

O\

=)

RTL logic and
per-session
lookup table

headers auth encrypt nonce
8:00

crypto
routing




Design choices: (De)coupling data/control
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Design choices: (De)coupling data/control
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SpinalHDL: design at RTL and system level

SpinalHDL; RTL + zero-cost abstractions from 1ib

LL:> 3. Let's do this on a RISC-V VexRiscv
and build everything with SpinalHDL

Programmatically generate RTL, but
also SoC design at much higher level!

SpinalHDL; RTL + zero-cost abstractions from 1ib
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Example: Allowed IP address prefix lookup
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Allowed IP lookup:

Longest prefix match using binary tree
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Match Addr w/ Prefix Set (Tree)

~

A
Q \ ‘| Lookup Stage 0 | RAM
3

. . . Lookup Stage 1 | RAM

Pipeline: —
G L/ Q Lookup Stage 2 | RAM

one IP

3\ , 1 Lookup Stage 3 | RAM

address blt >
per clock &:7 D Lookup Stage 31 | RAM

Result: longest prefix match

Multi stage pipeline, one stage for each address bit.

32 bits/stages for IPv4, 128 for IPv6, 129 for both.

Each stage has a memory (LUT, distributed or BRAM).

Use optimally balanced tree (reduce worst case RAM use!).
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Logic for one stage:
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Optimized for f.max:
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Match Addr w/ Prefix Set for RX and TX
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RX TDP RAM #0 X
RX TDP RAM #1 X
RX TDP RAM #2 X
RX TDP RAM #3 X
RX TDP RAM #31 X

Result: longest prefix matches

bit

Balanced combinatorial logic (< 4 levels) between registers
400 MHz on Ultrascale+
True dual port RAM (RX reads, TX reads, RISC-V writes).

800 million Allowed IP address prefix lookups per second.
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Blackwire builds upon top-notch OSH:

—> Blackwire uses SpinalHDL (Thanks Charles Papon!)
€ write cycle efficient RTL in less code
€ zero cost (no overhead) abstractions
€ the Spinal (building blocks) library is a piece of art

-> Blackwire uses Corundum (Thanks Alex Forencich!)
€ SGDMA NIC design for PCle and Ethernet FPGA boards
€ comes with Linux Kernel device driver

and tools... Verilator, GHDL, CocoTB, GTKWave, SymbiYosys, ...
thanks to everyone committing to those projects.
Thanks for explaining formal verification (Thanks Matt Venn!)
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Blackwire Project Status (9/2023)

=> Open sourced HDL on GitHub, some WIP to follow
https://github.com/brightai-nl/BlackwireOverview

FAQ: Actual code repositories listed in README!
-> Are We WireGuard Yet (AWWY)?

® 75% done;
® 25% to do, see README on GitHub for TODOs.

14:45
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https://github.com/brightai-nl/BlackwireOverview

Blackwire IP Core

manage remote peers, sessions and keys AXl4 Configuration

g g g

- https://github.com/brightai-nl/BlackwireOverview

AXl4 Stream



https://github.com/brightai-nl/BlackwireOverview

Blackwire: 'wg0' but implemented on FPGA
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with plaintext IP packets
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Blackwire: integrated in network infrastructure
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Blackwire wWireGuard

Thanks! Questions?

- https://github.com/brightai-nl/BlackwireOverview

> Q&A e-mail: Leon Woestenberg <leon@brightai.nl>


https://github.com/brightai-nl/BlackwireOverview
mailto:leon@brightai.nl

Complementary Slides



Blackwire FPGA Resources ~ (for 100 Gbit)

Alveo U50 example with Corundum + WireGuard (BRAM, no URAM)
RX path is 128 Gbit/s, TX path is 64 Gbit/s in this design

Norie 4, CLBLUTs CLBRegisters CARRY8 F7 Muxes F8 Muxes CLB LUT as Logic  LUT as Memory  Block RAM  URAM

DSPs
(871680) (1743360) (108960) (435840) (217920) (108960) (871680) (403200) Tile (1344)  (640) (5952)
v fpga 31.39% 32.04% 18.67% 0.36% 0.11% 58.96% 26.90% 9.71% 25.78% 6.09% 21.91%

Resources (roadmap: move more registers into BRAM/URAM)

Name A 1 CLBLUTs CLB Registers CARRY8 F7 Muxes F8 Muxes CLB LUT as Logic  LUT as Memory Block RAM  URAM DSPs
(871680) (1743360) (108960) (435840) (217920) (108960) (871680) (403200) Tile (1344) (640) (5952)
v [I] app.app_block_inst (mqgnic_app_block) 211501 462593 19298 649 8 50192 182601 28900 153 21 1300

add the following numbers for 100 Gbit/s full duplex:
subtract the following numbers for ~60 Gbit/s full duplex

> [1] packetTx_tx (BlackwireTransmit) | 67906 156822 6397 185 4 17931

59587 8319 20.5 0 432
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Olof Kindgren (He/Him) (He/Him) « 1st 1Mo eee

Award-winning Engineer and Actor at Qamcom

This is super interesting. | have been looking at doing exactly
the same thing. Is this a proprietary or open source
implementation? Would love to read some more about the work

Like - €) 6 | Reply - 3Replies
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Olof Kindgren (He/Him) (He/Him) « 1st 1Mo e

Award-winning Engineer and Actor at Qamcom

This is super interesting. | have been looking at doing exactly
the same thing. Is this a proprietary or open source
implementation? Would love to read some more about the work

Like - €) 6 | Reply - 3Replies

‘ Olof Kindgren (He/Him) (He/Him) « 1st Mo »=+

Award-winning Engineer and Actor at Qamcom

Ah! It looks like it is written in SpinalHDL too :D I'm
sure Charles Papon must be happy to see that :)

Like - € 1 | Reply
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