Blackwire™
WireGuard in HDL

100+ Gbit/s Q
on an FPGA NIC A

Leon Woestenberg Wl REG UARD

1:00

WIREGUARD

FAST, MODERN, SECURE VPN TUNNEL

e state-of-the-art clean-slate protocol for building network overlays with
encryption and authentication, IP/IP, many use cases, trusted crypto.

e a WireGuard peer is a host in the VPN, identified by its public key.
each peer can potentially reach every remote peer directly: meshing

e a WireGuard endpoint is the public (or outer) UDP address.
may change when endpoint roams; the tunnel stays up.

e cach peer has a set of allowed IP address prefixes within tunnel.
multicasting is possible

256 bit session key

IP Packet

/

/ encrypt: ChaCha20

/ auth: Polyl305

WG WireGuard Payload

UDP

UDP Payload

IPv4
Header

IP Payload

2:00

Ethernet Frame

WireGuard Type 4 packet
for data packets

IP Packet

/ encrypt: ChaCha20

/ auth: Polyl305

WG WireGuard Payload

UDP

UDP Payload

IPv4
Header

IP Payload

2:30

Ethernet Frame

Why WireGuard on an FPGA?

e Speed growth curve of Ethernet is steeper than that of CPUs.
Offloading 'instructure tasks' such as VPN/encryption and
authentication to smartNIC FPGAs becomes cost effective.

e Deterministic guaranteed behaviour vs. best-effort on CPU.

comeoee 222RIST

RELIABLE INTERNET STREAM TRANSPORT

e 9th February 2023 — The Video Services Forum (VSF), has further
enhanced the Reliable Internet Streaming Transport (RIST) protocol
with the use of WireGuard VPN in RIST devices.

3:30

Map WireGuard into our FPGA design space

decrypt &
WireGuard Type 4 data packets authenticate
peer on RX
WGT1-3
sessions/peer h
new : PCI
Ethernet session Previous Ethgrzgt
handshake current
next

/ encrypt & add

Type 4 data paCREtS,/ authentication
/ on TX

WireGuard

4:00

Map WireGuard into our FPGA design space

prevent crypto
headers decr‘ypt/ auth /r‘eplay /fir‘ewau

peer session allowed ip's
N public keys crypto routing
hand keys ° crypto firewall
shake | "tiners :
SESSLON endpoint
x25519 indices UDP addr
headers auth encrypt nonce APTRL

routing

4:30

Map WireGuard; Talk Numbers, challenges

100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle

LL:> roughly one handshake per minute
per active peer connection

1024 peers > 58 ms budget per handshake
take conservative design budget: 25 ms?

100 Gbit/s, 512 bits wide AXI Streaming 250 MHz
worst case one packet header in each clock cycle

Initial design choices for implementation

Let's do this in RTL

LL> 3. Let's do this on a RISC-V VexRiscv
maybe with some x25519 accelerator
(RISC-V s/w, custom instructions or
custom accelerator).

Let's do this in RTL

6:30

Design choices: (De)coupling data/control

prevent
replay

header‘s/decr‘ypt/ auth /

nonce

counter

crypto
firewall

N

control software
on VexRiscv RISC-V

7N

&

AXTI4
x-bar

O\

=)

RTL logic and
per-session
lookup table

headers auth encrypt nonce
8:00

crypto
routing

Design choices: (De)coupling data/control

header‘s/decr‘ypt/ auth /

prevent crypto
replay firewall
honce

counter

N

7N

."_Lp

revious

control software Ner current
on VexRiscv RISC-V <:::j x-bar t:::> next
headers auth encrypt nonce crypﬁo
routing
8:00

Design choices: (De)coupling data/control

9:00

prevent crypto
headers decrypt auth replay 28 e
session nonce
rx key counter
control software AXI4 allowed
on VexRiscv RISC-V <:::j X bap t:::> 1P
sets
endpoint {| session session nonce
UDP addr index tx key counter [
headers auth encrypt nonce BRI

routing

SpinalHDL: design at RTL and system level

SpinalHDL; RTL + zero-cost abstractions from 1ib

LL:> 3. Let's do this on a RISC-V VexRiscv
and build everything with SpinalHDL

Programmatically generate RTL, but
also SoC design at much higher level!

SpinalHDL; RTL + zero-cost abstractions from 1ib

9:30

Example: Allowed IP address prefix lookup

®

L

allowed
IP
set

10:00

11:00

Allowed IP lookup:

Longest prefix match using binary tree

’l_\i&o\vtss Leo‘:u{; Uss " _‘7“6

P(E,C«m.s “QPQIUP{SU*;
e .
To HdHe begt P&C\X G LO/
| oo oddvess In i Q
e Y ¢

15

Match Addr w/ Prefix Set (Tree)

~

A
Q \ ‘| Lookup Stage 0 | RAM
3

. . . Lookup Stage 1 | RAM

Pipeline: —
G L/ Q Lookup Stage 2 | RAM

one IP

3\ , 1 Lookup Stage 3 | RAM

address blt >
per clock &:7 D Lookup Stage 31 | RAM

Result: longest prefix match

Multi stage pipeline, one stage for each address bit.

32 bits/stages for IPv4, 128 for IPv6, 129 for both.

Each stage has a memory (LUT, distributed or BRAM).

Use optimally balanced tree (reduce worst case RAM use!).

12:00

16

13:00

Logic for one stage:

stage_sel
> o
% stage_o -
»
stage_i stage_d stage_sel »
ge_| > —— D ge_ ¢
bitpos_i bitpos_d ST ING bitpos_o -
Y »
v v |
: right_child_sel valid_match
A ip_addr_o
>
ip_addr_i ip_addr_d prefix_match
> P === > result_o >
result_i result_d A §
. >
location i o location_d
1A stage_sel
prefix_m, prefix_len_m
location_i >
B £
child_stage m c
g SRR 2 location_o -
[>
child_location_m o Il:er child_location o 8
JAN = " JAN
Tclk Tclk

Vivado: report_design_analysis -logic_level_distribution

Optimized for f.max:

13:30

stage_sel
stage_d2 5
o) stage o
ot
3 @
— L
stage i stage_d stage_sel stage_sel_d2
ge_| > ;m ge_ > ge_sel_
bitpos_i bitpos_d bitpos_d2 bitpos_o
pos_| > pos_ »] INC pos_ P;_
bitmask_d L
1>> | > bitset? |
A | right_child_sel
ip_addr_i - ip_addr_d ip_addr_d2 ip_addr_o
” 2 prefix_match_dj v ”
refix_xor
update_i XOR P XS [AND —>E& |
A A _xor_masKed(_d2) valid_match_d2
result_i result_d2 - \‘
F i »”
i i = result_o
location_i location_d location_d2 0O f——>
>l ;
»
——prefix_mem
location_i
>
child_stage_m child_stage_d2 stage_sel
E .
prefix_len_mem >
g »(s1 >>>r— .
prefix_mask =
] location_o
g ; \ 4 ; ; ; : 8 >
child_location_m child_location child_location_d2 2
i ELNN TR e _ 2 N
% _A_
clk ﬂ\
clk

18

Match Addr w/ Prefix Set for RX and TX

-

N o
C? I\..)Q
)

Y ¢
)
<D

Two pipeline stages per

ey

N

14:00

RX TDP RAM #0 X
RX TDP RAM #1 X
RX TDP RAM #2 X
RX TDP RAM #3 X
RX TDP RAM #31 X

Result: longest prefix matches

bit

Balanced combinatorial logic (< 4 levels) between registers
400 MHz on Ultrascale+
True dual port RAM (RX reads, TX reads, RISC-V writes).

800 million Allowed IP address prefix lookups per second.

14:30

Blackwire builds upon top-notch OSH:

—> Blackwire uses SpinalHDL (Thanks Charles Papon!)
€ write cycle efficient RTL in less code
€ zero cost (no overhead) abstractions
€ the Spinal (building blocks) library is a piece of art

-> Blackwire uses Corundum (Thanks Alex Forencich!)
€ SGDMA NIC design for PCle and Ethernet FPGA boards
€ comes with Linux Kernel device driver

and tools... Verilator, GHDL, CocoTB, GTKWave, SymbiYosys, ...
thanks to everyone committing to those projects.
Thanks for explaining formal verification (Thanks Matt Venn!)

20

Blackwire Project Status (9/2023)

=> Open sourced HDL on GitHub, some WIP to follow
https://github.com/brightai-nl/BlackwireOverview

FAQ: Actual code repositories listed in README!
-> Are We WireGuard Yet (AWWY)?

® 75% done;
® 25% to do, see README on GitHub for TODOs.

14:45

21

https://github.com/brightai-nl/BlackwireOverview

Blackwire IP Core

manage remote peers, sessions and keys AXl4 Configuration

g g g

- https://github.com/brightai-nl/BlackwireOverview

AXl4 Stream

https://github.com/brightai-nl/BlackwireOverview

Blackwire: 'wg0' but implemented on FPGA

I — W XILINX
etnucnpnyeplteedd ' 3 U50 i « ALVEO.
traffic
(i2§§;g§t network interface 'wgQ'

with plaintext IP packets

14:45 23

14:45

Blackwire: integrated in network infrastructure

tunneled
encrypted
traffic

plaintext
traffic

b ot =

i | (8 S e ga i | |
! 5 46 EAE S g6

. | WU U

x E R Y i i A
1] Ll U

il i

£l

il |

il |

il | s

s

]

¥ XILINX

UssC . ALVE

IIIIIIIIII illllllllllIIIIIII|IIIIIIIIIIIIIIII|l||III|II|I|||||IIIIIIIIIIIIIIIIII

control interface
over PCIe (or other
interface)

24

Blackwire wWireGuard

Thanks! Questions?

- https://github.com/brightai-nl/BlackwireOverview

> Q&A e-mail: Leon Woestenberg <leon@brightai.nl>

https://github.com/brightai-nl/BlackwireOverview
mailto:leon@brightai.nl

Complementary Slides

Blackwire FPGA Resources ~ (for 100 Gbit)

Alveo U50 example with Corundum + WireGuard (BRAM, no URAM)
RX path is 128 Gbit/s, TX path is 64 Gbit/s in this design

Norie 4, CLBLUTs CLBRegisters CARRY8 F7 Muxes F8 Muxes CLB LUT as Logic LUT as Memory Block RAM URAM

DSPs
(871680) (1743360) (108960) (435840) (217920) (108960) (871680) (403200) Tile (1344) (640) (5952)
v fpga 31.39% 32.04% 18.67% 0.36% 0.11% 58.96% 26.90% 9.71% 25.78% 6.09% 21.91%

Resources (roadmap: move more registers into BRAM/URAM)

Name A 1 CLBLUTs CLB Registers CARRY8 F7 Muxes F8 Muxes CLB LUT as Logic LUT as Memory Block RAM URAM DSPs
(871680) (1743360) (108960) (435840) (217920) (108960) (871680) (403200) Tile (1344) (640) (5952)
v [I] app.app_block_inst (mqgnic_app_block) 211501 462593 19298 649 8 50192 182601 28900 153 21 1300

add the following numbers for 100 Gbit/s full duplex:
subtract the following numbers for ~60 Gbit/s full duplex

> [1] packetTx_tx (BlackwireTransmit) | 67906 156822 6397 185 4 17931

59587 8319 20.5 0 432

27

3:30

Olof Kindgren (He/Him) (He/Him) « 1st 1Mo eee

Award-winning Engineer and Actor at Qamcom

This is super interesting. | have been looking at doing exactly
the same thing. Is this a proprietary or open source
implementation? Would love to read some more about the work

Like - €) 6 | Reply - 3Replies

28

3:30

Olof Kindgren (He/Him) (He/Him) « 1st 1Mo e

Award-winning Engineer and Actor at Qamcom

This is super interesting. | have been looking at doing exactly
the same thing. Is this a proprietary or open source
implementation? Would love to read some more about the work

Like - €) 6 | Reply - 3Replies

‘ Olof Kindgren (He/Him) (He/Him) « 1st Mo »=+

Award-winning Engineer and Actor at Qamcom

Ah! It looks like it is written in SpinalHDL too :D I'm
sure Charles Papon must be happy to see that :)

Like - € 1 | Reply

29

