
Virtual Prototypes and Open
Source Hardware Design in
Research and Education
Sallar Ahmadi-Pour (saahm)
sallar@uni-bremen.de
University of Bremen, Group of Computer Architecture

https://agra.informatik.uni-bremen.de/projects/risc-v/

All our RISC-V related works

https://github.com/agra-uni-bremen/

Our AGRA Github

Group of Computer Architecture @ Uni Bremen

• Circuits and System Descriptions
• Specifications
• Hardware description languages
• System level description languages (e.g.

SystemC, UML, SysML, etc.)
• Robustness

• Algorithms and Data Structures
• Boolean satisfiability (SAT)
• Decision diagrams
• Processing large amounts of data

• Verification
• Model Checking
• Equivalence checking
• Debugging

• Test Pattern Generation
• Automatic test pattern generation
• Design for testability

• Emerging Technologies
• Contactless Side-Channel Attacks
• Approximate Computing
• Microfluidic Biochips
• In-Memory Computing
• Reversible Logic

Prof. Dr. Rolf Drechsler
Head of the Group of

Computer Architecture

2

Motivation

• System-on-Chips (SoCs) are big and complex
You wouldn’t want to write thousands of lines of code and then go on towards
an endless bug hunt, would you?

• Complex interleaving of Software (SW) and Hardware (HW)
• Errors can happen at all layers of the System

Finding and fixing: Early = Cheap, Late = Expensive
• Traditional flow: design and produce HW first, SW later

• Problems with HW will be fixed by SW or new chip
• SW can’t be developed aligned with HW and early

3

Virtual Prototyping

• Utilize abstractions to model aspects
of system with different details

• “What is actually needed to run
SW faithfully?”

• Don’t model every wire, become
faster with higher abstractions

• Explore the design space of
structure

• Electronic System Level Design Flow
• Executable Specification

Faster Time
to Market

4

Faster Time
to Market

Virtual Prototyping

5

Faster Time
to Market

HDL

Virtual Prototyping

5

Faster Time
to Market

HDL

SystemC
(TLM, RTL, AMS)

Virtual Prototyping

5

Faster Time
to Market

HDL

SystemC
(TLM, RTL, AMS)

TLM

RTL

AMS, SPICE

Virtual Prototyping

5

• RV32GC, RV64GC support
(i.e. RV32IMAFDC, RV64IMAFDC)

• Implemented in SystemC TLM-2.0
• SW debug capabilities (GDB RSP

interface) with for example Eclipse
• FreeRTOS, RIOT OS, Zephyr OS, Linux

support
• Peripherals, e.g. Flash ctrl, UART, SPI
• SiFive HiFive Board configuration

available
• Many more features

6

Open Source RISC-V Virtual Prototype

github.com/agra-uni-bremen/riscv-vp

Virtual Breadboard for the Virtual Prototype

7

• Extends RISC-V VP
• Interactive simulation with off-chip

components [Buttons, Switches, LEDs,
7-Segment, …], Modeled in C++ or Lua

• Mouse, keyboard and visual I/O in
graphical user interface

• Build drivers for devices you don‘t have
yet

• Education on embedded systems (it
doesn‘t break physically)

https://github.com/agra-uni-bremen/virtual-breadboard

Virtual Breadboard for the Virtual Prototype

7

• Extends RISC-V VP
• Interactive simulation with off-chip

components [Buttons, Switches, LEDs,
7-Segment, …], Modeled in C++ or Lua

• Mouse, keyboard and visual I/O in
graphical user interface

• Build drivers for devices you don‘t have
yet

• Education on embedded systems (it
doesn‘t break physically)

https://github.com/agra-uni-bremen/virtual-breadboard

Virtual Breadboard for the Virtual Prototype

7

• Extends RISC-V VP
• Interactive simulation with off-chip

components [Buttons, Switches, LEDs,
7-Segment, …], Modeled in C++ or Lua

• Mouse, keyboard and visual I/O in
graphical user interface

• Build drivers for devices you don‘t have
yet

• Education on embedded systems (it
doesn‘t break physically)

https://github.com/agra-uni-bremen/virtual-breadboard

Virtual Prototype in the Loop – VP and real HW

8

https://github.com/agra-uni-bremen/virtual-bus

Virtual Prototype in the Loop – VP and real HW

8

https://github.com/agra-uni-bremen/virtual-bus

Virtual Prototype in the Loop – VP and real HW

8

https://github.com/agra-uni-bremen/virtual-bus

MicroRV32 – From VP to RTL

• Use VP to model HW Platform, then utilize as reference for
RTL implementation

• Utilize SpinalHDL for OSS based HW development
• Generate Verilog, VHDL
• Simulate
• Synthesize for FPGA

• RV32IMC (configurable), for FPGAs and ASIC
• Binary compatible VP target for fast SW development
• Multi-cycle data path as robust and lightweight design

9

SpinalHDL

MicroRV32 – From VP to RTL

• MicroRV32 SoC runs around 20 MHz
(Core itself reaches around 43 MHz)

• On HX8K FPGA requires 26% (RV32I) -
44% (RV32IMC) of area

• Built with OSS tools, made open source
• Also put into ASIC (commercial 28 nm

node), waiting for packaging

10

SpinalHDL

github.com/agra-uni-bremen/microrv32

MicroRV32 – From VP to RTL

• MicroRV32 SoC runs around 20 MHz
(Core itself reaches around 43 MHz)

• On HX8K FPGA requires 26% (RV32I) -
44% (RV32IMC) of area

• Built with OSS tools, made open source
• Also put into ASIC (commercial 28 nm

node), waiting for packaging

10

SpinalHDL

github.com/agra-uni-bremen/microrv32

Motivation: Automatically explore all
paths inside a piece of software
• Instead of concrete values for variables

use symbolic values
• Symbolic values represent a set of

possible concrete values (i.e. path
conditions)

• Represented as formulas, e.g. 𝑎𝑎 >
5 & 𝑎𝑎 < 10

• During symbolic execution the
values are constrained more and
more

11

Symbolic Execution

void myfunc(int a) {
if (a > 8)
// ...
else
// ...

if (a < 5)
// ...
else
// ...

}

Motivation: Automatically explore all
paths inside a piece of software
• Instead of concrete values for variables

use symbolic values
• Symbolic values represent a set of

possible concrete values (i.e. path
conditions)

• Represented as formulas, e.g. 𝑎𝑎 >
5 & 𝑎𝑎 < 10

• During symbolic execution the
values are constrained more and
more

11

Symbolic Execution

void myfunc(int a) {
if (a > 8)
// ...
else
// ...

if (a < 5)
// ...
else
// ...

}

Motivation: Automatically explore all
paths inside a piece of software
• Instead of concrete values for variables

use symbolic values
• Symbolic values represent a set of

possible concrete values (i.e. path
conditions)

• Represented as formulas, e.g. 𝑎𝑎 >
5 & 𝑎𝑎 < 10

• During symbolic execution the
values are constrained more and
more

11

Symbolic Execution

PC: T

PC:(𝑎𝑎 > 8)

PC:¬(𝑎𝑎 > 8)

PC: 𝑎𝑎 > 8 & (𝑎𝑎 < 5)

PC: 𝑎𝑎 > 8 &¬(𝑎𝑎 < 5)

PC:¬ 𝑎𝑎 > 8 & (𝑎𝑎 < 5)

PC:¬ 𝑎𝑎 > 8 &¬(𝑎𝑎 < 5)

T

T

TF

F

F

void myfunc(int a) {
if (a > 8)
// ...
else
// ...

if (a < 5)
// ...
else
// ...

}

Motivation: Automatically explore all
paths inside a piece of software
• Instead of concrete values for variables

use symbolic values
• Symbolic values represent a set of

possible concrete values (i.e. path
conditions)

• Represented as formulas, e.g. 𝑎𝑎 >
5 & 𝑎𝑎 < 10

• During symbolic execution the
values are constrained more and
more

11

Symbolic Execution

PC: T

PC:(𝑎𝑎 > 8)

PC:¬(𝑎𝑎 > 8)

PC: 𝑎𝑎 > 8 & (𝑎𝑎 < 5)

PC: 𝑎𝑎 > 8 &¬(𝑎𝑎 < 5)

PC:¬ 𝑎𝑎 > 8 & (𝑎𝑎 < 5)

PC:¬ 𝑎𝑎 > 8 &¬(𝑎𝑎 < 5)

T

T

TF

F

F

void myfunc(int a) {
if (a > 8)
// ...
else
// ...

if (a < 5)
// ...
else
// ...

}

Motivation: Automatically explore all
paths inside a piece of software
• Instead of concrete values for variables

use symbolic values
• Symbolic values represent a set of

possible concrete values (i.e. path
conditions)

• Represented as formulas, e.g. 𝑎𝑎 >
5 & 𝑎𝑎 < 10

• During symbolic execution the
values are constrained more and
more

11

Symbolic Execution

PC: T

PC:(𝑎𝑎 > 8)

PC:¬(𝑎𝑎 > 8)

PC: 𝑎𝑎 > 8 & (𝑎𝑎 < 5)

PC: 𝑎𝑎 > 8 &¬(𝑎𝑎 < 5)

PC:¬ 𝑎𝑎 > 8 & (𝑎𝑎 < 5)

PC:¬ 𝑎𝑎 > 8 &¬(𝑎𝑎 < 5)

T

T

TF

F

F

• Apply idea from symbolic execution to
embedded software

• Combine with concrete inputs (i.e.
concolic testing)

• Build upon RISC-V VP to faithfully
simulate the hardware interaction

• Results: Discovered various bugs in
RIOT OS modules

12

github.com/agra-uni-bremen/symex-vp

SymEx-VP – Test and Verify Embedded Software

• Visualize the traces generated with
SymEx-VP in 3D

• Gain more insights and better
understanding of SymEx-VP results

• Explore and study multiple traces
• Information is encoded in color,

shape, orientation, etc.

13

github.com/agra-uni-bremen/symex-3d

SymEx-VP – Test and Verify Embedded Software

Conclusion

• VPs not only interesting for industry, but also research and
education

• Build virtually anything, no need (yet) for real HW (and its fast)
• Enable powerful methods of SW development in HW design
• Accessible for anyone

• Extensible (merge requests always welcome)
• No need for hardware
• Verify what you build early on

14

Virtual Prototypes and Open
Source Hardware Design in
Research and Education
Sallar Ahmadi-Pour (saahm)
sallar@uni-bremen.de
University of Bremen, Group of Computer Architecture

https://agra.informatik.uni-bremen.de/projects/risc-v/

All our RISC-V related works

https://github.com/agra-uni-bremen/

Our AGRA Github

	Virtual Prototypes and Open Source Hardware Design in Research and Education
	Group of Computer Architecture @ Uni Bremen
	Motivation
	Virtual Prototyping
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Virtual Breadboard for the Virtual Prototype
	Virtual Breadboard for the Virtual Prototype
	Virtual Breadboard for the Virtual Prototype
	Virtual Prototype in the Loop – VP and real HW
	Virtual Prototype in the Loop – VP and real HW
	Virtual Prototype in the Loop – VP and real HW
	MicroRV32 – From VP to RTL
	MicroRV32 – From VP to RTL
	MicroRV32 – From VP to RTL
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Conclusion
	Virtual Prototypes and Open Source Hardware Design in Research and Education

