
A reusable verification, emulation and

validation flow for ASIC design

Tomasz Hemperek

dectris.com

Typical setup

ASIC

FPGA

PC

... in my sensor design experience

ORConf 2023

Firmware

Verification

Development life cycle

ASIC Design Tapeout

FPGA Firmware

Validation

software

Production testing

software

Verification Validation Production testing

Different timelines → very costly late discovered specification issues and bugs

Multiple teams → communication via specifications

→ non overlapping codebase

ORConf 2023

Firmware

Verification

Development life cycle

ASIC Design Tapeout

FPGA Firmware

Validation

software

Production testing

software

Verification Validation Production testing

Team 1

Team 2

Team 3

Team 4

Team 5 Team 6

Team 7

Different timelines → very costly late discovered specification issues and bugs

Multiple teams → communication via specifications

→ non overlapping codebase

ORConf 2023

Development life cycle

ASIC Design Tapeout

FPGA Firmware

Validation software

Production software

Verification

Validation

Production testing

→ shorten development time

→ improve communication

→ early influence on ASIC functionality

→ better coverage

Verification is software.

ORConf 2023

Chip Design and Manufacturing Cost

ORConf 2023

Source: IBS

Simulation/Verification

Simulation (RTL)

test_.py

Input (randomization)

output

ASIC

model

HAL/RAL

spi.v

input.v

output.v

ASIC

(RTL)

BUS

vpi/cocotb

coverage

Move the verification part to the software.

ORConf 2023

Emulation

FPGA

test_tdc.py

Input (randomization)

output

HAL/RAL

spi.v

input.v

output.v

ASIC

(RTL)

BUS

USB/…

coverage
ASIC

model

ORConf 2023

Validation

FPGA

IC

test_.py

Input (randomization)

output

HAL/RAL

spi.v

input.v

output.v

ASIC

BUS

USB/…

coverage
ASIC

model

ORConf 2023

Example use case

https://github.com/themperek/ORConf23

Disclaimer:

This is a very simple demo.

In large part, this work was done while at the University of Bonn (https://gitlab.cern.ch/silab/tdc_example/).

Some amount of “hackery” is required.

ORConf 2023

https://github.com/themperek/ORConf23
https://gitlab.cern.ch/silab/tdc_example/

TDC ASIC

TDC / DUT

fifo

8b10b encoder

serializer

spi

pulse decoder

SPI

RESETB

TS_RESET

CLK

SIGNAL

DATA_OUT

EN

• Single channel TDC

• Configured/Enabled by SPI interface

• Input “SIGNAL” sampled with CLK

• Timestamp (16bit) and ToT (8bit) stored to FIFO

• Timestamp reset with “TS_RESET”

• Data are 8b10b encoded (simple protocol) and serialized

SIGNAL

Timestamp

ToT

ORConf 2023

TDC ASIC

Firmware

fifo

8b10b encoder

serializer

spi

pulse decoder

FIRMWARE

SPI

PULSER (RESET)

SEQ_GEN (SIGNAL)

TDC_RX (DATA)

B
U

S

FIFO

UART

Firmware/software modules based on Basil
https://github.com/silab-bonn/basil

In emulation use UART
https://github.com/ultraembedded/core_dbg_bridge

emulationsimulation

ORConf 2023

https://github.com/silab-bonn/basil
https://github.com/ultraembedded/core_dbg_bridge

Example module

tdc_fw_core.sv:

basil/HL/spi.py:

Hardware Abstraction Layer (HAL)

Every firmware (Verilog) module has a corresponding driver

ORConf 2023

Top configuration

Communication interfaces are separate.

Memory address mapping are defined.

communication

data fifo

spi module

hardware drivers/HAL

tdc.yaml

ORConf 2023

Register Abstraction (RAL)

Can define arbitrary size registers

An arbitrary amount of fields

Can specify bit order

Can specify arrays (repeating fields)

Can be initialized (also with configuration file)

tdc.yaml

ORConf 2023

User experience

Set configuration and send via SPI

Check 8b10b sync

Enable data receiving

Configure SIGNAL pattern

Timestamp reset

Wait for sequence to finish

Check FIFO fill level

Get data from FIFO

Initialize:

Same code for verification

and validation.

ORConf 2023

How simulation works

User Code

Basil

SiSim

TransferLayer

Simulator

cocotb

TcpServer

BusDriver

Tcp/IP

HDL

HadrwareLayer

UART interface is replaced with the simulation interface.

ORConf 2023

Continuous integration
https://github.com/themperek/ORConf23/actions

test on FPGA (self-hosted)build firmware (F4PGA)

reports

ORConf 2023

https://github.com/themperek/ORConf23/actions

Test reports

ORConf 2023

Coverage and Randomization

PyVSC: https://github.com/fvutils/pyvsc

Define covergroup:

Sample:

ORConf 2023

https://github.com/fvutils/pyvsc

Testing with pytest

pip install pytest-xdist

pytest -n auto

Parallel execution :

Tests parametrization:

ORConf 2023

Conclusions

Contact:

Mail: tomasz.hemperek@dectris.com

LinkedIn: https://linkedin.com/in/hemperek

• Moving teams together for better collaboration

• Verification is software, let firmware/software contribute early

• Reused for validation and production testing

• Understand limitations

• Can be an organizational challenge

• Can be done with all open tools and modern infrastructure

• Successfully used to develop and test ASICs (example: https://doi.org/10.1016/j.nima.2020.164721)

ORConf 2023

mailto:tomasz.hemperek@dectris.com
https://linkedin.com/in/hemperek
https://doi-org.ezproxy.cern.ch/10.1016/j.nima.2020.164721

Thank you for your attention!

