BlackwireTM WireGuard in HDL 100+ Gbit/s

on an FPGA NIC

WireGuard

Leon Woestenberg

FAST, MODERN, SECURE VPN TUNNEL

- state-of-the-art clean-slate protocol for building network overlays with encryption and authentication, IP/IP, many use cases, trusted crypto.
- a *WireGuard peer* is a host in the VPN, identified by its public key. each peer can potentially reach every remote peer directly: **meshing**
- a *WireGuard* <u>endpoint</u> is the public (or outer) UDP address. may change when endpoint **roams**; the tunnel stays up.

1:00

each peer has a set of <u>allowed IP</u> address prefixes within tunnel.
multicasting is possible

Why WireGuard on an FPGA?

- Speed growth curve of Ethernet is steeper than that of CPUs. Offloading 'instructure tasks' such as VPN/encryption and authentication to smartNIC FPGAs becomes cost effective.
- Deterministic guaranteed behaviour vs. best-effort on CPU.

Example use case:

 9th February 2023 – The Video Services Forum (VSF), has further enhanced the Reliable Internet Streaming Transport (RIST) protocol with the use of WireGuard VPN in RIST devices.

Map WireGuard into our FPGA design space

Map WireGuard into our FPGA design space

Map WireGuard; Talk Numbers, challenges

100 Gbit/s, 512 bits wide AXI Streaming 250 MHz worst case one packet header in each clock cycle

roughly one handshake per minute per active peer connection

1024 peers \rightarrow 58 ms budget per handshake take conservative design budget: 25 ms?

100 Gbit/s, 512 bits wide AXI Streaming 250 MHz worst case one packet header in each clock cycle

Initial design choices for implementation

Design choices: (De)coupling data/control

Design choices: (De)coupling data/control

Design choices: (De)coupling data/control

Example: Allowed IP address prefix lookup

Allowed IP lookup: Longest prefix match using binary tree

•	P3 1010+ 14	Match Addr w/ Prefix Set (Tree)									
\bigcirc	P4 10101 H	Lookup Stage 0	RAM								
Pipeline:	B	Lookup Stage 1	RAM								
one IP	a c	Lookup Stage 2	RAM								
Y		Lookup Stage 3	RAM								
address bit		•••	•••								
per clock	PY)	Lookup Stage 31	RAM								
		Result: longest prefix	match								

- Multi stage pipeline, one stage for each address bit.
- 32 bits/stages for IPv4, 128 for IPv6, 129 for both.
- Each stage has a memory (LUT, distributed or BRAM).
- Use optimally balanced tree (reduce worst case RAM use!).

Vivado: report_design_analysis -logic_level_distribution

Optimized for f.max: stage sel stage d2 stage stage_o stage_d stage sel d2 stage_i stage_sel → == ID bitpos d bitpos d2 bitpos i bitpos o INC bitmask d bit set? 1 >> right_child_sel ip_addr_o ip_addr_i ip_addr_d ip addr d2 prefix match d2 prefix_xor XOR update i ==0 & xor masked(d2) valid match d2 result d2 result i result result_o location location d location d2 Λ prefix mem location_i stage_sel child stage d2 child stage m mem prefix len mem s1 >>><mark>prefix_m</mark>ask location location_o child_location_m child location child location d2 INC l clk l clk

P3 1010+ 143	Match Addr w/ Prefix Set for RX and TX						
D PY 10101 HY	RX	(TDP RAM #0	ТΧ			
B	RX	(TDP RAM #1	ТΧ			
CE DE	RX	(TDP RAM #2	ТΧ			
TRY'E YD	RX	(TDP RAM #3	ТΧ			
CO PI			• • •				
(P3) (P)	RX	(TDP RAM #31	ТΧ			

Result: longest prefix matches

- → Two pipeline stages per bit
- → Balanced combinatorial logic (≤ 4 levels) between registers
- → 400 MHz on Ultrascale+
- → True dual port RAM (RX reads, TX reads, RISC-V writes).
- → 800 million Allowed IP address prefix lookups per second.

Blackwire builds upon top-notch OSH:

- → Blackwire uses SpinalHDL (Thanks Charles Papon!)
 - write cycle efficient RTL in less code
 - zero cost (no overhead) abstractions
 - the Spinal (building blocks) library is a piece of art
- → Blackwire **uses Corundum** (Thanks Alex Forencich!)
 - SGDMA NIC design for PCIe and Ethernet FPGA boards
 - comes with Linux Kernel device driver

and tools... Verilator, GHDL, CocoTB, GTKWave, SymbiYosys, ... thanks to everyone committing to those projects. Thanks for explaining **formal verification** (Thanks Matt Venn!)

Blackwire Project Status (9/2023)

→ Open sourced HDL on GitHub, some WIP to follow https://github.com/brightai-nl/BlackwireOverview

FAQ: Actual code repositories listed in README!

- → Are We WireGuard Yet (AWWY)?
 - ♦ 75% done;
 - ♦ 25% to do, see README on GitHub for TODOs.

Blackwire IP Core

https://github.com/brightai-nl/BlackwireOverview

Blackwire: 'wg0' but implemented on FPGA

Blackwire: integrated in network infrastructure

Blackwire WireGuard

Thanks! *Questions?*

- https://github.com/brightai-nl/BlackwireOverview
- → Q&A e-mail: Leon Woestenberg <leon@brightai.nl>

Complementary Slides

Blackwire FPGA Resources ~ (for 100 Gbit)

Alveo U50 example with Corundum + WireGuard (BRAM, no URAM)

RX path is 128 Gbit/s, TX path is 64 Gbit/s in this design

Name ^1	CLB LUTs (871680)	CLB Registers (1743360)						LUT as Memory (403200)	Block RAM Tile (1344)		
V N fpga	31.39%	32.04%	18.67%	0.36%	0.11%	58.96%	26.90%	9.71%	25.78%	6.09%	21.91%

Resources (roadmap: move more registers into BRAM/URAM)

Name	1 CLB LUTs (871680)						LUT as Logic (871680)	LUT as Memory (403200)	Block RAM Tile (1344)		
I app.app_block_inst (mqnic_app_block)	211501	462593	19298	649	8	50192	182601	28900	153	21	1300

add the following numbers for 100 Gbit/s full duplex:

subtract the following numbers for ~60 Gbit/s full duplex

> 🔳 packetTx_tx (BlackwireTransmit)	67906	156822	6397	185	4	17931	59587	8319	20.5	0	432	
-------------------------------------	-------	--------	------	-----	---	-------	-------	------	------	---	-----	--

Olof Kindgren (He/Him) (He/Him) • 1st Award-winning Engineer and Actor at Qamcom

1mo •••

This is super interesting. I have been looking at doing exactly the same thing. Is this a proprietary or open source implementation? Would love to read some more about the work

Like · 🖒 6 | Reply · 3 Replies

Olof Kindgren (He/Him) (He/Him) • 1st Award-winning Engineer and Actor at Qamcom

This is super interesting. I have been looking at doing exactly the same thing. Is this a proprietary or open source implementation? Would love to read some more about the work

Like · 🖰 6 | Reply · 3 Replies

Olof Kindgren (He/Him) (He/Him) • 1st 1mo ••• Award-winning Engineer and Actor at Qamcom

Ah! It looks like it is written in SpinalHDL too :D I'm sure **Charles Papon** must be happy to see that :)

1mo •••